
Lecture 3: Control Structures
Date: Week 3 | Duration: 1 hour

https://gamma.app/?utm_source=made-with-gamma

Lecture Objectives

1

Execution Flow
Understanding the concept of
program execution flow control.

2

Flowcharts
Ability to create and read flowcharts
for branching algorithms.

3

Loops
Knowledge of types of cyclic
constructs and their application.

4

Nested Structures
Understanding the principles of building nested structures.

5

Construct Selection
Ability to choose the appropriate control construct for
solving problems.

https://gamma.app/?utm_source=made-with-gamma

1. Control Flow
What is Control Flow?
Control Flow is the order in which a program's instructions are executed.

Types of Control Structures

Sequence
Instruction 1 ³ Instruction 2 ³
Instruction 3

Branching
Condition ³ YES ³ Action 1 / NO ³
Action 2

Loop
Condition ³ YES ³ Action ³ (return to
condition) / NO ³ Exit

https://gamma.app/?utm_source=made-with-gamma

Structured Programming Theorem
Böhm-Jacopini theorem (1966): Any algorithm can be implemented using only three control structures:

Sequence

Selection (Branching)

Iteration (Loop)

This is the foundation of structured programming 4 a methodology for writing clear and reliable programs.

Control Flow Block Diagrams
A flowchart is a graphical representation of an algorithm, showing the flow of control.

https://gamma.app/?utm_source=made-with-gamma

2. Branching Algorithms
Concept of Branching

Branching is a control structure that allows choosing one of alternative execution paths based on a condition.

Types of Branching

IF number < 0 THEN
 number = -number
END_IF

Incomplete Branching (if)

IF condition THEN action END_IF

IF number MOD 2 = 0 THEN
 PRINT "Even"
ELSE
 PRINT "Odd"
END_IF

Complete Branching (if-else)

IF condition THEN action1 ELSE action2 END_IF

https://gamma.app/?utm_source=made-with-gamma

3. Looping Algorithms
Concept of a Loop
A loop is a control structure that allows a block of instructions to be executed repeatedly.

Components of a loop:

Initialization: initial setup of variables

Condition: check for continuation/termination

Loop body: actions to be repeated

Modification: changing the control variable

Types of Loops

WHILE condition DO action
END_WHILE

Pre-condition loop (WHILE)
The condition is checked before the
body is executed. May not execute
even once.

DO action WHILE condition

Post-condition loop (DO-
WHILE)
The condition is checked after the
body is executed. Will execute at
least once. FOR i FROM start TO end STEP

step DO action END_FOR

Parameter loop (FOR)
The number of iterations is known.
Automatic counter management.

https://gamma.app/?utm_source=made-with-gamma

Loop Control and Nested Structures

WHILE true
 IF x = 0 THEN BREAK
END_WHILE

FOR i FROM 1 TO 10
 IF i MOD 2 = 0 THEN CONTINUE
END_FOR

Early Exit (break)

Immediately terminates loop execution.

Skip to Next Iteration (continue)

Skips the rest of the loop body and proceeds to the next
iteration.

IF condition1 THEN
 IF condition2 THEN
 action1
 ELSE
 action2
END_IF

FOR i FROM 1 TO 10
 FOR j FROM 1 TO 10
 product = i * j
END_FOR

Nested Conditions

Conditions located within other conditions.

Nested Loops

Loops located within other loops.

https://gamma.app/?utm_source=made-with-gamma

Infinite Loops
An infinite loop is a programming construct where a block of code repeats indefinitely because the loop's exit condition never
becomes false. They can be either intentional or erroneous.

// Server waiting for requests
WHILE true
 request = WAIT_FOR_REQUEST()
 PROCESS(request)
END_WHILE

Intentional Infinite Loops

Used in systems that must run continuously, such as operating
systems, servers, embedded systems, or GUI applications
waiting for user interaction.

// ERROR: i does not change
i = 1
WHILE i <= 10
 PRINT i
 // Forgot i = i + 1
END_WHILE

Accidental Infinite Loops (Errors)

Occur due to errors in program logic when the loop termination
condition is never met. This leads to program freezing or
memory overflow.

https://gamma.app/?utm_source=made-with-gamma

4. Nested Structures
Nested structures are control constructs (e.g., conditional statements or loops) that are placed inside other similar or different
control constructs. This allows for the creation of more complex and detailed algorithms for data processing, increasing program
flexibility and power.

Nested Conditional Statements

Nested conditional statements are used when it is necessary to check several conditions sequentially, where the result of one
check affects the possibility or method of executing the next. This allows for handling various scenarios depending on multiple
factors.

// Determine the quarter of the year based on the month number
IF month >= 1 AND month <= 12 THEN
 IF month >= 1 AND month <= 3 THEN
 OUTPUT "Month belongs to the first quarter."
 ELSE IF month >= 4 AND month <= 6 THEN
 OUTPUT "Month belongs to the second quarter."
 ELSE IF month >= 7 AND month <= 9 THEN
 OUTPUT "Month belongs to the third quarter."
 ELSE // month >= 10 AND month <= 12
 OUTPUT "Month belongs to the fourth quarter."
 END IF
ELSE
 OUTPUT "Invalid month number entered. The month number must be from 1 to 12."
END IF

Nested Loops

Nested loops are loops that are located inside other loops. The inner loop fully executes for each iteration of the outer loop. They
are often used for working with two-dimensional data structures, such as matrices, or for creating combinatorial sequences.

// Output a 10x10 multiplication table
FOR i FROM 1 TO 10 LOOP
 FOR j FROM 1 TO 10 LOOP
 OUTPUT i * j, " " // Output product and a space
 END LOOP
 OUTPUT " " // New line after each row of the table
END LOOP

https://gamma.app/?utm_source=made-with-gamma

5. Practical Algorithm Examples

Finding Prime Numbers
An algorithm for finding all prime numbers
up to a given N.

Palindrome Check
Determines if a string is a palindrome
(reads the same forwards and
backwards).

Factorial Calculation
An iterative approach to calculate the
factorial of a number N.

https://gamma.app/?utm_source=made-with-gamma

START
 INPUT n
 FOR number FROM 2 TO n
 is_prime = true
 FOR divisor FROM 2 TO sqrt(number)
 IF number MOD divisor = 0 THEN
 is_prime = false
 BREAK
 END_IF
 END_FOR
 IF is_prime THEN
 PRINT number
 END_IF
 END_FOR
END

1. Prime Number Search Algorithm (Sieve of Eratosthenes)
This algorithm efficiently finds all prime numbers up to a given value n, using the "sieve" method.

https://gamma.app/?utm_source=made-with-gamma

2. Palindrome Checker Algorithm
A palindrome is a word, phrase, or sequence of characters that reads the same forwards and backward. This algorithm efficiently
determines if a given string is a palindrome by comparing characters from both ends.

START
 INPUT string
 length = LENGTH(string)
 is_palindrome = true

 FOR i FROM 0 TO length/2
 IF string[i] b string[length-1-i] THEN
 is_palindrome = false
 BREAK
 END_IF
 END_FOR

 IF is_palindrome THEN
 OUTPUT "Palindrome"
 ELSE
 OUTPUT "Not a palindrome"
 END_IF
END

https://gamma.app/?utm_source=made-with-gamma

3. Factorial Calculation Algorithm
The factorial of a number n (denoted as n!) is the product of all positive integers from 1 to n. An iterative approach to calculating the
factorial involves multiplying successive numbers, starting from 1, until reaching the given n.

START
 INPUT n
 IF n < 0 THEN
 OUTPUT "Error: negative number. Factorial is defined only for non-negative numbers."
 ELSE IF n = 0 THEN
 OUTPUT 1 // Factorial of 0 is 1 by definition
 ELSE
 factorial = 1
 FOR i FROM 1 TO n
 factorial = factorial * i
 END_FOR
 OUTPUT factorial
 END_IF
END

https://gamma.app/?utm_source=made-with-gamma

Key Takeaways
1 Changing Order

Control structures alter the sequential order of execution.

2 Three Basic Constructs
Sequence, branching, loop 4 sufficient for any algorithm.

3 Branching
Allows choosing the program execution path.

4 Loops
Automate repetitive actions.

5 Nesting
Allows for creating complex algorithms.

6 Flowcharts
Help visualize program logic.

7 Choosing the Construct
The correct choice of construct simplifies problem-solving.

https://gamma.app/?utm_source=made-with-gamma

Review Questions and Resources
Review Questions

What are the three basic control structures?

What is the difference between a pre-test loop and a post-
test loop?

What is an infinite loop and when is it needed?

How do nested loops work?

Which loop should you choose if the number of iterations is
known in advance?

Self-study Materials

Lafore R. "Object-Oriented Programming in C++" Chapter
3-4

Cormen T. "Introduction to Algorithms" Chapter 2.1-2.2

Algorithm visualization: https://visualgo.net

Flowchart builder: https://www.draw.io

Next Lecture: Arrays

https://visualgo.net/
https://www.draw.io/
https://gamma.app/?utm_source=made-with-gamma

