Lecture 3: Control Structures

Date: Week 3 | Duration: 1 hour

Made with GAMMA

https://gamma.app/?utm_source=made-with-gamma

Lecture Objectives

—0— —0— —0—

Execution Flow Flowcharts Loops

Understanding the concept of Ability to create and read flowcharts Knowledge of types of cyclic
program execution flow control. for branching algorithms. constructs and their application.
Nested Structures Construct Selection

Understanding the principles of building nested structures. Ability to choose the appropriate control construct for

solving problems.

Made with GAMMA

https://gamma.app/?utm_source=made-with-gamma

1. Control Flow

What is Control Flow?

Control Flow is the order in which a program's instructions are executed.

Types of Control Structures

/ Y
Branching Loop
Condition = YES - Action1/NO > Condition = YES = Action = (return to
Action 2 condition) / NO - Exit

Sequence

Instruction 1 = Instruction 2 >
Instruction 3

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

Structured Programming Theorem

Bohm-Jacopini theorem (1966): Any algorithm can be implemented using only three control structures:

e Sequence
e Selection (Branching)

e lIteration (Loop)

This is the foundation of structured programming — a methodology for writing clear and reliable programs.

Control Flow Block Diagrams

A flowchart is a graphical representation of an algorithm, showing the flow of control.

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

2. Branching Algorithms

Concept of Branching

Branching is a control structure that allows choosing one of alternative execution paths based on a condition.

Types of Branching

Incomplete Branching (if) Complete Branching (if-else)
IF condition THEN action END_IF IF condition THEN action1 ELSE action2 END_IF
IF number <0 THEN IF number MOD 2 =0 THEN
number = -number PRINT "Even"
END_IF ELSE
PRINT "Odd"
END_IF

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

3. Looping Algorithms

Concept of a Loop

A loop is a control structure that allows a block of instructions to be executed repeatedly.

Components of a loop:

e |Initialization: initial setup of variables

e Condition: check for continuation/termination

e Loop body: actions to be repeated

e Modification: changing the control variable

Types of Loops

Pre-condition loop (WHILE)

The condition is checked before the
body is executed. May not execute
even once.

WHILE condition DO action
END_WHILE

Post-condition loop (DO-
WHILE)

The condition is checked after the
body is executed. Will execute at
least once.

DO action WHILE condition

Parameter loop (FOR)

The number of iterations is known.
Automatic counter management.

FOR i FROM start TO end STEP
step DO action END_FOR

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

Loop Control and Nested Structures

Early Exit (break) Nested Conditions
Immediately terminates loop execution. Conditions located within other conditions.
WHILE true IF condition1 THEN
IF x =0 THEN BREAK IF condition2 THEN
END_WHILE action1
ELSE
Skip to Next Iteration (continue) action2
END_IF
Skips the rest of the loop body and proceeds to the next
iteration.
Nested Loops
FORiFROM 1TO 10 Loops located within other loops.
IFi MOD 2 =0 THEN CONTINUE
END_FOR FORiFROM 1TO 10

FORjFROM 1TO 10
product =i * |
END_FOR

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

Infinite Loops

An infinite loop is a programming construct where a block of code repeats indefinitely because the loop's exit condition never
becomes false. They can be either intentional or erroneous.

Intentional Infinite Loops Accidental Infinite Loops (Errors)
Used in systems that must run continuously, such as operating Occur due to errors in program logic when the loop termination
systems, servers, embedded systems, or GUI applications condition is never met. This leads to program freezing or
waiting for user interaction. memory overflow.
/1 Server waiting for requests // ERROR: i does not change
WHILE true i=1
request = WAIT_FOR_REQUEST() WHILE i<=10
PROCESS(request) PRINT i
END_WHILE // Forgoti=i+1
END_WHILE

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

4. Nested Structures

Nested structures are control constructs (e.g., conditional statements or loops) that are placed inside other similar or different
control constructs. This allows for the creation of more complex and detailed algorithms for data processing, increasing program
flexibility and power.

Nested Conditional Statements

Nested conditional statements are used when it is necessary to check several conditions sequentially, where the result of one
check affects the possibility or method of executing the next. This allows for handling various scenarios depending on multiple

factors.

// Determine the quarter of the year based on the month number
IF month >=1 AND month <= 12 THEN
IF month >=1 AND month <=3 THEN
OUTPUT "Month belongs to the first quarter."
ELSE IF month >=4 AND month <=6 THEN
OUTPUT "Month belongs to the second quarter."
ELSE IF month >=7 AND month <=9 THEN
OUTPUT "Month belongs to the third quarter.”
ELSE // month >= 10 AND month <= 12
OUTPUT "Month belongs to the fourth quarter.”
END IF
ELSE
OUTPUT "Invalid month number entered. The month number must be from 1 to 12."
END IF

Nested Loops

Nested loops are loops that are located inside other loops. The inner loop fully executes for each iteration of the outer loop. They
are often used for working with two-dimensional data structures, such as matrices, or for creating combinatorial sequences.

// Output a 10x10 multiplication table
FORiFROM 1 TO 10 LOOP
FORjFROM 1 TO 10 LOOP
OUTPUT i *j," " // Output product and a space
END LOOP
OUTPUT " " // New line after each row of the table
END LOOP

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

5. Practical Algorithm Examples

a er-dgp ss a dlumoon

1122 5 5 g 53 g 7S

- L B0 o
7 KRR 5 1| 5[1555]13 6

|] — Pallindrome
12 BN 15 15 4 Alliddon

Finding Prime Numbers Palindrome Check Factorial Calculation
An algorithm for finding all prime numbers Determines if a string is a palindrome An iterative approach to calculate the
up to a given N. (reads the same forwards and factorial of a number N.

backwards).

Made with GAMMA

https://gamma.app/?utm_source=made-with-gamma

1. Prime Number Search Algorithm (Sieve of Eratosthenes)

This algorithm efficiently finds all prime numbers up to a given value n, using the "sieve" method.

START
INPUT n
FOR number FROM 2 TO n
iS_prime = true
FOR divisor FROM 2 TO sqgrt(hnumber)
IF number MOD divisor =0 THEN
is_prime = false
BREAK
END_IF
END_FOR
IFis_prime THEN
PRINT number
END_IF
END_FOR
END

Made with GAMMA

https://gamma.app/?utm_source=made-with-gamma

2. Palindrome Checker Algorithm

A palindrome is a word, phrase, or sequence of characters that reads the same forwards and backward. This algorithm efficiently
determines if a given string is a palindrome by comparing characters from both ends.

START
INPUT string
length = LENGTH(string)
is_palindrome = true

FORiFROM 0 TO length/2
IF stringf[i] # string[length-1-i] THEN
is_palindrome = false
BREAK
END_IF
END_FOR

IF is_palindrome THEN
OUTPUT "Palindrome"
ELSE
OUTPUT "Not a palindrome"
END_IF
END

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

3. Factorial Calculation Algorithm

The factorial of a number n (denoted as n!) is the product of all positive integers from 1to n. An iterative approach to calculating the
factorial involves multiplying successive numbers, starting from 1, until reaching the given n.

START
INPUT n
IFn<0THEN
OUTPUT "Error: negative number. Factorial is defined only for non-negative numbers."
ELSE IFn=0THEN
OUTPUT 1 // Factorial of 0 is 1 by definition
ELSE
factorial = 1
FORiFROM 1TOnN
factorial = factorial * i
END_FOR
OUTPUT factorial
END_IF
END

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

Key Takeaways

1 Changing Order

Control structures alter the sequential order of execution.

2 Three Basic Constructs

Sequence, branching, loop — sufficient for any algorithm.

3 Branching

Allows choosing the program execution path.

4 Loops

Automate repetitive actions.

5 Nesting

Allows for creating complex algorithms.

6 Flowcharts

Help visualize program logic.

7 Choosing the Construct

The correct choice of construct simplifies problem-solving.

Made with GRMIA

https://gamma.app/?utm_source=made-with-gamma

Review Questions and Resources

Review Questions Self-study Materials

e What are the three basic control structures?

Lafore R. "Object-Oriented Programming in C++" Chapter

e What is the difference between a pre-test loop and a post- 3-4

test loop? e Cormen T. "Introduction to Algorithms" Chapter 2.1-2.2
e Whatis an infinite loop and when is it needed? e Algorithm visualization: https://visualgo.net
e How do nested loops work? e Flowchart builder: https://www.draw.io

e Which loop should you choose if the number of iterations is
known in advance?

Next Lecture: Arrays

Made with GRMIA

https://visualgo.net/
https://www.draw.io/
https://gamma.app/?utm_source=made-with-gamma

